
LECTURE- 24

Distributed Shared Memory

Distributed Operating System

Shared Memory

We have already seen some kinds of shared memory
mechanisms

 shared memory symmetric multiprocessors:

◦ all memory is shared and equidistant from processors

◦ caching is used for performance

There are also other kinds of shared memory approaches

 NUMA (non-uniform memory access) machines

◦ each machine has its own memory but the hardware allows
accessing remote memory

◦ remote addresses are no different than local accesses at
the assembly level

◦ access to remote memory is much slower

◦ no hardware caching occurs (but the software may do
caching) Distributed Operating System

Why Distributed Shared Memory

 collaborative or concurrent applications use two
main mechanisms to communicate or synchronize:
message passing (send/receive) or shared
memory

 to port these apps to systems without physical
shared memory, you need support for DSM

◦ need this for scaling across multiple disjoint
systems/nodes (supercomputers, MPP are too
costly)

◦ even some many core systems don’t have
uniform memory access from all cores

◦ need to take advantage of RDMA mechanisms

Distributed Operating System

Distributed Shared Memory

 objectives: minimize latency and keep

coherent

 software presents the abstraction of shared

memory

 either an OS or a language run-time

manages the shared memory

 there are many different DSM granularities

◦ page-based DSM: like regular virtual memory (e.g.,

Clouds here at Tech!)

◦ shared-variable DSM and object-based DSM:

managed by a language run-time system

Distributed Operating System

Implementation

 Think of how you would implement such a

“virtual” shared memory among workstations

◦ Software: at the OS level for unsuspecting processes

 how can this be done efficiently?

◦ Software: at a language runtime level (e.g., Java VM)

 how can it be done without hardware support?

◦ Hardware level support

 most efficient, but costly; many exotic interconnects have some

support (Quadrics, Infiniband…)

◦ Hybrid

Distributed Operating System

Granularity of sharing

 cache/bus line -> overkill in distributed

environments

 page-based

 object-based -> typically

language/runtime support

Distributed Operating System

Granularity tradeoffs

 finer granularity

◦ improve concurrency, increase communication

and frequency of execution of consistency

related protocols

 coarser granularity

◦ limit concurrency (especially is single writer only),

reduce comm/consistency protocols

◦ issue with false sharing

 may be able to reduce with careful layout of data

structures, hard if implemented at system/hardware level

Distributed Operating System

Objective: Reduce Latency

 Approach:

◦ migration

 migrate shared unit (page, object, etc.) to node

which has current access -> need state to

determine current location

◦ replication

 keep multiple copies -> need per shared unit

state for keeping track of replicas, and types of

access at each replica

Distributed Operating System

Access Algorithm

 Single Reader – Single Writer

◦ simplest, migration can suffice, not very efficient

 Multiple Readers – Single Writer

◦ more general, need to track current/most recent

writer (aka owner)

 Multiple Readers – Multiple Writers

◦ maximum concurrency, need to resolve write

conflicts through consistency protocols

Distributed Operating System

DSM vs. other shared memory

mechanisms
 We have seen simple cache consistency mechanisms in two

different settings:

◦ SMPs (snooping caches, shared bus, write-update or write-
invalidate protocols, write buffers, etc.)

◦ distributed file systems (client or server-based protocols, leases,
invalidation, delayed writes)

 Similar mechanisms apply to DSM, but they have to be more
sophisticated

◦ DSM will be used for synchronization and inter-process
communication

◦ DSM has to be very fast

◦ comparable in speed to memory, not to a file system

◦ caching is paramount

◦ no central resources exist (like a bus we can snoop on or lock it
cheaply) Distributed Operating System

Page-based DSM

 The issues in implementing DSM are similar to what
we have seen so far, but some complications arise in
the page-based case

◦ which is the most common case for getting DSM
running on machines with no shared memory
support in hardware (e.g., workstations over
ethernet)

 Pages are coarse grained—false sharing may occur

◦ extra invalidations in a write-invalidate protocol

◦ possibly overwriting other data in a write-update
protocol

 Realistically, write-invalidate is the only option for
page-based DSM

◦ hard to do updates on every write: protection is at
page granularity Distributed Operating System

Coherence Policy

 write update

◦ allows multiple readers and writers

◦ multicast message to update peer copies

◦ processes have to agree on a total order for
multicast writes for SC

 write invalidate

◦ multiple readers, single writer
 first invalidate peers

 write to local cache

 subsequent reads will get this new value

Distributed Operating System

Write-invalidate protocol

 Not particularly exciting—usually straightforward
and exactly what you would expect

 Interesting point: the “owner” of a page can be
changing (e.g., can be the last writer to the page)

 The owner is responsible for blocking “writes” until
all outstanding copies have been invalidated

 How to find the owner?

◦ directories

◦ distributed directories (statically or dynamically)

◦ hints (probable owner, owner links, and periodic
broadcasts so that all processors know a recent
owner)

Distributed Operating System

Synchronization

 Strict synchronization (e.g., mutual

exclusion) can be too costly in DSM

◦ spinlocks are a disaster as they require

transferring pages only to find out that the

lock is still busy

 A centralized synchronization

manager may exist

Distributed Operating System

Sample Implementation

Techniques
 DSM mapped to same VA on all nodes

 kernels at individual nodes responsible for page level protection

 page states: none, read-only, read-write

 two data structures:

◦ owner(P): last writer of page P

◦ copyset(P): current sharers for P

 home node (also called manager node)

◦ where directory info for a page is kept

◦ m nodes and N pages, distribute the work, i.e each node
responsible for m/N pages

◦ given a page, you can get the home node

 owner node

◦ the node that has write permission for a page, at any given
time Distributed Operating System

ASSIGNMENT

 Q: Explain page based DSM.

Distributed Operating System

